
Spatial Cypher Cheat Sheet - Intro To Geospatial Cypher Functions With Neo4j

Data Import
We can use Cypher to import data into Neo4j from formats such as CSV and JSON, including GeoJSON.

CSV

GeoJSON

Using the LOAD CSV Cypher command to create an airport routing graph.

1 - Create a constraint on the field that identies 
uniquesness, in this case Airport IATA code. This 
ensures we won’t create duplicate airports but 
also creates a database index to improve 
performance of our data import steps below.

2 - Create Airport nodes, storing their location, 
name, IATA code, etc as node properties.

3 - Create FLIGHT_TO relationships connecting 
airports with a connecting flight. Increment the 
num_flights counter variable to keep track of the 
number of flights between airports per year.

CREATE CONSTRAINT FOR (a:Airport) REQUIRE a.iata IS UNIQUE;

LOAD CSV WITH HEADERS 
FROM "https://cdn.neo4jlabs.com/data/flights/airports.csv" 
AS row
MERGE (a:Airport {iata: row.IATA_CODE})
ON CREATE SET a.city = row.CITY,
              a.name = row.AIRPORT,
              a.state = row.STATE,
              a.country = row.country,
              a.location = 
                point({ latitude: toFloat(row.LATITUDE),
                       longitude: toFloat(row.LONGITUDE)
                });

LOAD CSV WITH HEADERS 
FROM "https://cdn.neo4jlabs.com/data/flights/flights.csv" AS row
CALL {
  WITH row
  MATCH (origin:Airport {iata: row.ORIGIN_AIRPORT})
  MATCH (dest:Airport {iata: row.DESTINATION_AIRPORT})
  MERGE (origin)-[f:FLIGHT_TO]->(dest)
    ON CREATE SET 
      f.num_flights = 0, f.distance = toInteger(row.DISTANCE)
    ON MATCH SET 
      f.num_flights = f.num_flights + 1
} IN TRANSACTIONS OF 100000 ROWS;

We can also store arrays of Points to represent complex geometries like lines and polygons, for example to represent land parcels.

CALL apoc.load.json('https://cdn.neo4jlabs.com/data/landgraph/parcels.geojson') 
YIELD value
UNWIND value.features AS feature
CREATE (p:Parcel) SET 
  p.coordinates = [coord IN feature.geometry.coordinates[0] | point({latitude: coord[1], longitude: coord[0]})]
  p += feature.properties;

Routing With Path Finding Algorithms

Shortest Path

Dijkstra’s Algorithm

Shortest Weighted Path

A* Algorithm

MATCH p = shortestPath(
    (:Airport {iata: "SFO"})-[:FLIGHT_TO*..10]->(:Airport {iata: "RSW"}) 
) RETURN p

MATCH (origin:Airport {iata: "SFO"})
MATCH (dest:Airport {iata: "RSW"})
CALL 
  apoc.algo.dijkstra(
    origin, 
    dest, 
    "FLIGHT_TO", 
    "distance"
  )
YIELD path, weight
UNWIND nodes(path) AS n
RETURN {
  airport: n.iata, 
  lat: n.location.latitude, 
  lng: n.location.longitude
} AS route

MATCH (origin:Airport {iata: "SFO"})
MATCH (dest:Airport {iata: "RSW"})
CALL 
  apoc.algo.aStarConfig(
    origin, 
    dest, 
    "FLIGHT_TO", 
    {
     pointPropName: "location", 
     weight: "distance"
    }
  )
YIELD weight, path
RETURN weight, path

The shortestPath function performs a binary 
breadth-first search to find the shortest 
path between nodes in the graph.

Often we want to consider the shortest 
weighted path taking into account distance, 
time or some other cost stored as relationship 
properties. Dijkstra and A* are two algorithms 
that take relationship (or edge) weights into 
account when calculating the shortest path.

The A* algorithm adds a heuristic 
function to choose which paths to 
explore. In our case the heuristic is the 
distance to the final destination.

Dijkstra’s algorithm is similar to a breadth-first search, 
but takes into account relationship properties (distance) 
and prioritizes exploring low-cost routes first using a 
priority queue.

Spatial Cypher Functions

Radius Distance 

Within Bounding Box 

Geocoding

MATCH (a:Airport)
WHERE point.distance(
  a.location, 
  point({latitude:37.55948, longitude:-122.32544})) < 20000
RETURN a

MATCH (a:Airport)
WHERE point.withinBBox(
  a.location,
  point({longitude:-122.325447, latitude: 37.55948 }), 
  point({longitude:-122.314675 , latitude: 37.563596}))
RETURN a

CALL apoc.spatial.geocode('SFO Airport') YIELD location
---------------------------------------------------------------
{
  "description": "San Francisco International Airport, 780, 
South Airport Boulevard, South San Francisco, San Mateo County, 
CAL Fire Northern Region, California, 94128, United States",
  "longitude": -122.38398938548363,
  "latitude": 37.622451999999996,
}

To find nodes close to other nodes in the 
graph we can use the point.distance() 
function to perform a radius distance search

To search for nodes within a bounding box we 
can use the point.withinBBox() function.

To geocode a location description into latitude, 
longitude location we can use the 
apoc.spatial.geocode() procedure. By 
default this procedure uses the Nominatim 
geocoding API but can be configured to use 
other geocoding services, such as Google 
Cloud.

Spatial Point Type
Neo4j  supports 2D or 3D geographic (WGS84) or cartesian coordinate reference system (CRS) points

RETURN point( {latitude:37.62245, longitude:-122.383989} )

CREATE (a:Airport)
SET a.iata = "SFO",
a.location = point( {latitude:37.62245, longitude:-122.383989})
RETURN a

CREATE POINT INDEX airportIndex 
FOR (a:Airport) ON (a.location)

Creating a point by specifying latitude/longi-
tude. WGS84 is assumed when using lat/lon.

Point data can be stored as properties on 
nodes or relationships. Here we create an 
Airport node and set its location as a point.

Database indexes are used to speed up search performance. Here we create a database 
index on the location property for Airport nodes. This will help us find airports faster 
when searching for airports by location (radius distance or bounding box spatial search).

MATCH p=(sfo:Airport {iata: "SFO"})-[b:FLIGHT_TO*2]->(rsw:Airport {iata: "RSW"}) RETURN *

Intro To Cypher & The Property Graph Data Model

Neo4j is a database management system (DBMS) that uses the property graph data 
model which is composed of nodes, relationships, and properties to model, store, and 
query data as a graph. Nodes can have one or more labels, relationships have a single 
type and direction. Key-value pair properties can be stored on nodes and relationships.

The Cypher query language is used to query data and interact with Neo4j. Cypher is a 
declarative query language that uses ASCII-art like syntax to define graph patterns that 
form the basis of most query operations. Nodes are defined with parenthesis, 
relationships with square brackets, and can be combined to create complex graph 
patterns. Common Cypher commands are MATCH (find where the graph pattern exists), 
CREATE (add data to the database using the specified graph pattern), and RETURN 
(return a subset of the data as a result of a traversal through the graph.

Search the graph for 
the following pattern.

This graph pattern represents a node with the label Airport that has a property iata with the 
value “SFO”, connected through one or more outgoing relationships of type FLIGHT_TO to a 
node with the label Airport and iata value “RSW” . We bind variables sfo, f, and rsw to refer to 
each part of the graph pattern later in the query if needed.

Return any 
variables that 
we’ve matched on 
in previous parts 
of the query

FLIGHT_TO

dista
nce: 967

num_flig
hts:

5065

FLIG
HT_TO

distance: 1607

num
_flights: 385

Airport

iata: "SFO"
city: "San Francisco"

location: POINT (lat:-122.374, lng:y:37.619)
name: "San Francisco International Airport
state: "CA"

Airport

iata: "DEN"
city: "Denver"

location: POINT (lat: -104.667, lng:39.858)
name: "Denver International Airport"
state: "CO"

Airport

iata: "RSW"
city: "Ft. Myers"

location: POINT (lat: -81.755, lng: 26.536))
name: "Southwest Florida International Airport"
state: "FL"

Nodes are defined within parentheses () 
properties within curly braces {}

The variable length path operator * defines paths of arbitrary length. 
We specify a maximum length of 2 relationships.

The variable p is bound 
to the path connecting 
SFO and RSW



Spatial Cypher Cheat Sheet - Using Neo4j With Python

Working With OpenStreetMap Data

Loading A Road Network WIth OSMNx
pip install osmnx

import osmnx as ox

G = ox.graph_from_place("Boston, MA, USA", network_type="drive")
fig, ax = ox.plot_graph(G)

gdf_nodes, gdf_relationships = ox.graph_to_gdfs(G)
gdf_nodes.reset_index(inplace=True)
gdf_relationships.reset_index(inplace=True)

gdf_nodes

gdf_relationships

node_query = '''
    UNWIND $rows AS row
    WITH row WHERE row.osmid IS NOT NULL
    MERGE (i:Intersection {osmid: row.osmid})
        SET i.location = 
         point({latitude: row.y, longitude: row.x }),
            i.ref = row.ref,
            i.highway = row.highway,
            i.street_count = toInteger(row.street_count)
    RETURN COUNT(*) as total
    '''

rels_query = '''
    UNWIND $rows AS road
    MATCH (u:Intersection {osmid: road.u})
    MATCH (v:Intersection {osmid: road.v})
    MERGE (u)-[r:ROAD_SEGMENT {osmid: road.osmid}]->(v)
        SET r.oneway = road.oneway,
            r.lanes = road.lanes,
            r.ref = road.ref,
            r.name = road.name,
            r.highway = road.highway,
            r.max_speed = road.maxspeed,
            r.length = toFloat(road.length)
    RETURN COUNT(*) AS total
    '''

def insert_data(tx, query, rows, batch_size=1000):
    total = 0
    batch = 0
    
    while batch * batch_size < len(rows):
        results = tx.run(query, parameters = {
          'rows': 
            rows[batch * batch_size: (batch + 1) * batch_size]
            .to_dict('records')
        }).data()
        print(results)
        total += results[0]['total']
        batch += 1

with driver.session() as session:
    session.execute_write(insert_data, node_query, gdf_nodes.drop(columns=['geometry']))
    session.execute_write(insert_data, rels_query, gdf_relationships.drop(columns=['geometry']))

Here is our nodes GeoDataFrame. Each 
row represents an intersection in the 

Boston road network.

Here is our relationships 
GeoDataFrame. Each row 

represents a road segment 
connecting two intersec-

tions.

In this section we will import data from 
OpenStreetMap into Neo4j using the 
OSMNx Python package. Below is the 
property graph data model we will use 
to model the road network of Boston.

Visualizing the Boston road network using Neo4j Bloom, 
styled using betweenness centrality and Louvain for 

neighborhood detection

Define a Cypher query to add intersection 
nodes from the nodes GeoDataFrame

Adding road segments from the relationships 
GeoDataFrame connecting intersection nodes

Because our GeoDataFrames 
can be very large we break 

them up into batches to 
avoid sending too much data 

to the database at once.

The Neo4j Python Driver
Creating A GeoDataFrame From Data Stored In Neo4j

import neo4j

NEO4J_URI           = "neo4j://localhost:7689"
NEO4J_USER          = "neo4j"
NEO4J_PASSWORD      = "letmeinnow"
NEO4J_DATABASE      = "neo4j"

driver = neo4j.GraphDatabase.driver(
  NEO4J_URI, auth=(NEO4J_USER, NEO4J_PASSWORD)
)

AIRPORT_QUERY = """
  MATCH (origin:Airport)-[f:FLIGHT_TO]->(dest:Airport)
  CALL {
   WITH origin
   MATCH (origin)-[f:FLIGHT_TO]-()
   RETURN sum(f.num_flights) AS origin_centrality
  }
  CALL {
   WITH dest
   MATCH (dest)-[f:FLIGHT_TO]-()
   RETURN sum(f.num_flights) AS dest_centrality
  }
  RETURN {
    origin_wkt: 
      "POINT (" + origin.location.longitude + " " + origin.location.latitude + ")",
    origin_iata: origin.iata, 
    origin_city: origin.city, 
    origin_centrality: origin_centrality, 
    dest_centrality: dest_centrality,
    dest_wkt: 
      "POINT (" + dest.location.longitude + " " + dest.location.latitude + ")",
    dest_iata: dest.iata, 
    dest_city: dest.city, 
    distance: f.distance,
    num_flights: f.num_flights,
    geometry: 
      "LINESTRING (" + origin.location.longitude + " " + origin.location.latitude + "," 
      + dest.location.longitude + " " + dest.location.latitude + ")"
    } 

def get_airport(tx):
    results = tx.run(AIRPORT_QUERY)
    df = results.to_df(expand=True)
    df.columns = 
     ['origin_city','origin_wkt', 'dest_city', 'dest_wkt', 'origin_centrality', 'distance', 'origin_iata',
      'geometry','num_flights', 'dest_centrality', 'dest_iata']
    df['geometry'] = geopandas.GeoSeries.from_wkt(df['geometry'])
    df['origin_wkt'] = geopandas.GeoSeries.from_wkt(df['origin_wkt'])
    df['dest_wkt'] = geopandas.GeoSeries.from_wkt(df['dest_wkt'])
    gdf = geopandas.GeoDataFrame(df, geometry='geometry')
    return gdf

with driver.session(database=NEO4J_DATABASE) as session:
    airport_df = session.execute_read(get_airport)

world = geopandas.read_file(
 geopandas.datasets.get_path('naturalearth_lowres')
)

ax = world[world.continent == 'North America']
 .plot(color='white', edgecolor='black')

flights_gdf = flights_gdf.set_geometry("origin_wkt")
flights_gdf.plot(ax=ax, markersize='origin_centrality')

flights_gdf = flights_gdf.set_geometry("geometry")
flights_gdf.plot(ax=ax, markersize=0.1, linewidth=0.01)

In this section we’ll use the Neo4j 
Python Driver to create a GeoData-
Frame of our flight data. We’ll also 
compute weighted degree centrality so 
we can plot airport size relative to their 
“importance” in the US airline network. 
The Neo4j Python Driver can be 
installed with:

pip install neo4j

Connection credentials for 
our Neo4j database

Create a connection to 
the database

Define a Cypher query to fetch data from Neo4j

We return the geometry 
of our origin and 

destination airports, and 
the flight route as Well 

Known Text (WKT). POINT 
for the airports and 

LINESTRING for the flight 
route. We’ll parse this 

WKT when defining the 
geometry in our 
GeoDataFrame.

The Neo4j Python Driver has a .to_df() function which 
will convert a Neo4j result set to a pandas 

DataFrame

Here we parse the WKT columns into GeoSeries and 
convert our pandas DataFrame into a GeoPandas 

GeoDataFrame

We now have a GeoDataFrame 
where each row is a flight route 

between two airports. We can plot 
the airport and routes, using the 
centrality metric to size airport 
nodes: more important airports 

should be larger.

Weighted degree 
centrality is a measure of 
a node’s importance in 
the network and is the 
sum of all relationship 
weights connected to a 

given node.


